11 research outputs found

    Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    Get PDF
    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O-3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O-3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere

    Atmospheric Black Carbon along a Cruise Path through the Arctic Ocean during the Fifth Chinese Arctic Research Expedition

    No full text
    From July to September 2012, during the fifth Chinese National Arctic Research Expedition (CHINARE), the concentrations of black carbon (BC) aerosols inside the marine boundary layer were measured by an in situ aethalometer. BC concentrations ranged from 0.20 ng∙m−3 to 1063.20 ng∙m−3, with an average of 75.74 ng∙m−3. The BC concentrations were significantly higher over the mid-latitude and coastal areas than those over the remote ocean and high latitude areas. The highest average concentration was found over offshore China (643.44 ng∙m−3) during the cruise, while the lowest average was found over the Arctic Ocean (5.96 ng∙m−3). BC aerosol was found mainly affected by the terrestrial input and displayed seasonal and spatial variations. Compared with the results from the third and fourth CHINARE of summer 2008, and summer 2010, the inter-annual variation of BC over the Arctic Ocean was negligible

    Inferring global surface HCHO concentrations from multisource hyperspectral satellites and their application to HCHO-related global cancer burden estimation

    No full text
    Formaldehyde (HCHO) is a toxic and hazardous air pollutant that widely exists in atmosphere. Insufficient spatial and temporal coverage of surface HCHO measurements is limiting studies on surface HCHO-related air quality management and health risk assessment. This study develops a method to derive global ground-level HCHO concentrations from satellite-based tropospheric HCHO columns using TM5-simulated surface-to-column conversion factor with coarse spatial resolution. The method improves the factor more representative in finer grids by constraining TM5-simulated vertical profile shapes with satellite HCHO columns. The surface HCHO concentrations derived by the Ozone Mapping and Profiler Suite (OMPS) show good correlation with in situ HCHO measurements (R = 0.59) from the U.S. Environmental Protection Agency surface network. We investigated how surface HCHO relates to urbanization and population aggregation over seven regions with high HCHO pollution. The results show urban HCHO increases as a power function with population size in China, India, and West Asia. HCHO concentrations in rural aeras also present strong log–log relationship with population aggregation in China, India, the United States, and Europe. Moreover, OMPS-derived ground-level HCHO concentrations were used to estimate global cancer burden caused by long-term outdoor HCHO exposure. The results show that up to 418188 more people worldwide will develop this cancer during the human life cycle. The global cancer burden is mainly from the South-East Asia region (33.11 %) and the Western Pacific region (22.95 %). This cancer occurrence in India and China is ranked 1st and 2nd in the world due to the large population size and serious HCHO pollution. Besides, global surface HCHO concentrations and cancer burden derived from the Environmental Trace Gases Monitoring Instrument which is China’s first hyperspectral space-based spectrometer are found similar patterns with that from OMPS. Our results provide new insight into the impact of population urbanization on HCHO pollution and global outdoor HCHO-caused health risks

    Ground-based Hyperspectral Stereoscopic Remote Sensing Network: A Promising Strategy to Learn Coordinated Control of O3 and PM2.5 over China

    No full text
    With the coming of the “14th Five-Year Plan”, the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 ÎŒm (PM2.5) and O3 has become a major issue of air pollution prevention and control in China. The stereoscopic monitoring of regional PM2.5 and O3 and their precursors is crucial to achieve coordinated control. However, current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM2.5 and O3 simultaneously and support air quality control. The University of Science and Technology of China (USTC) has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) since 2015. This monitoring network provides a significant opportunity for the regional coordinated control of PM2.5 and O3 in China. One-year vertical profiles of aerosol, NO2 and HCHO monitored from four MAX-DOAS stations installed in four megacities (Beijing, Shanghai, Shenzhen, and Chongqing) were used to characterize their vertical distribution differences in four key regions, Jing–Jin–Ji (JJJ), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB), respectively. The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape, respectively, and both show exponential shapes in YRD and SB. The NO2 vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions. The shape of the HCHO vertical profile in JJJ and PRD was Gaussian, whereas an exponential shape was shown in YRD and SB. Moreover, a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain (NCP) by five MAX-DOAS stations (Shijiazhuang (SJZ), Wangdu (WD), Nancheng (NC), Chinese Academy of Meteorological Sciences (CAMS), and University of Chinese Academy of Sciences (UCAS)) belonging to the above network. The aerosol optical depths (AOD) in these five stations decreased in the order of SJZ > WD > NC > CAMS > UCAS. The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC. As an important precursor of secondary aerosol, the peak of NO2 air mass in WD and NC all occurred 1 h earlier than that of aerosol. This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS, which potentially affected the O3 concentration in Beijing. Finally, CAMS was selected as a typical site to determine the O3–NOx–volatile organic compounds (VOCs) sensitivities in vertical space. We found the production of O3 changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NOx-limited condition from the 0–100 m layer to the 200–300 m layer. In addition, the downward transport of O3 could contribute to the increase of ground surface O3 concentration. This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM2.5 and O3 and their precursors and conduct attribution of sources.ISSN:2095-809

    Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    No full text
    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50% of the total speciated NMHCs emission (2.47 to 5.04 g kg(-1)), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg(-1)) and primary organic carbon (POC, 2.05 to 4.11 gC kg(-1)), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) x 10(10) molecule cm(-3) s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3% of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen-and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes
    corecore